Epigenetics—where the environment meets the genetics of disease: Interpreting high-throughput DNA Methylation data

Miles Benton

Institute of Environmental Science and Research, Wellington, New Zealand.
Genomics Research Centre, Griffith Health Institute, Griffith University, Australia.

WHBRS Young Investigators Meeting
Victoria University, Wellington

19th November 2012
Epi- (GREEK: over, above) genetics
- heritable changes in gene expression/phenotype
- functionally relevant changes, doesn’t modify underlying genomic sequence
Epigenetics: An Overview

- Epi-(GREEK:over,above) genetics
 - heritable changes in gene expression/phenotype
 - functionally relevant changes, doesn’t modify underlying genomic sequence

- Several mechanisms:
Epigenetics: An Overview

- **Epi-(GREEK:over,above) genetics**
 - heritable changes in gene expression/phenotype
 - functionally relevant changes, doesn’t modify underlying genomic sequence

- Several mechanisms:
 1. Histone modifications (Acetylation and Methylation)
Epigenetics: An Overview

- Epi-(GREEK:over,above) genetics
 - heritable changes in gene expression/phenotype
 - functionally relevant changes, doesn’t modify underlying genomic sequence

- Several mechanisms:

 1. Histone modifications (Acetylation and Methylation)
 2. DNA Methylation
A brief overview of DNA Methylation

- 5’methylation of cytosine
- typically at CpG dinucleotide
A brief overview of DNA Methylation

- 5’methylation of cytosine
- typically at CpG dinucleotide

Result is a reduction of gene expression (though there are exceptions)
A brief overview of DNA Methylation

- 5’ methylation of cytosine
- Typically at CpG dinucleotide

Result is a reduction of gene expression (though there are exceptions)

- Methylation is heritable - imprinting
- **BUT** is also dynamic: response to environment
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up

- DNA is Bisulfite converted, fragmented and hybridised.
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up

- DNA is Bisulfite converted, fragmented and hybridised.
- Difference in intensity between meth/unmeth probes gives Beta.
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up

- DNA is Bisulfite converted, fragmented and hybridised.
- Difference in intensity between meth/unmeth probes gives Beta.

Beta Values

\[\beta = \frac{meth}{meth + unmeth + 100} \]

Values range between 0-1
- think of as percent methylation

Example Beta Values Plot
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up

- DNA is Bisulfite converted, fragmented and hybridised.
- Difference in intensity between meth/unmeth probes gives Beta.

Beta Values

\[
\beta = \frac{meth}{meth + unmeth + 100}
\]

Values range between 0-1
- think of as percent methylation
Study Design is Crucial

Need to really think about study design:

- Same old story: Quality in equals Quality out
 - good bioinformatics will never make up for poor lab technique and/or poor study design
Study Design is Crucial

Need to really think about study design:

- Same old story: Quality in equals Quality out
 - good bioinformatics will never make up for poor lab technique and/or poor study design

- Gender - sex specific methylation patterns
Study Design is Crucial

Need to really think about study design:

- Same old story: Quality in equals Quality out
 - good bioinformatics will never make up for poor lab technique and/or poor study design

- Gender - sex specific methylation patterns

- Origin of sample (i.e. blood, tissue)
 - mixed cell populations
Study Design is Crucial

Need to really think about study design:

- Same old story: Quality in equals Quality out
 - good bioinformatics will never make up for poor lab technique and/or poor study design

- Gender - sex specific methylation patterns

- Origin of sample (i.e. blood, tissue)
 - mixed cell populations

- Case/Control? Paired-samples? Numbers?
Example: Gender and Tissue specific markers
The Biology

Time for the interesting part...

The technology in action
Investigating Methylation Profiles in Blood Cells

Publicly available data set (6 'healthy' males) - cell sorted

Cluster Dendrogram
Publicly available data set (6 'healthy' males) - cell sorted

cg21697512

CD34 () CHR:1 (208081541)
Investigating Methylation Profiles in Blood Cells

Publicly available data set (6 'healthy' males) - cell sorted

- **cg18012089**: Beta Value for ITGB2 (CHR:21 (46327720))
- **cg07597976**: Beta Value for CD19 (CHR:16 (28943019))
- **cg00500176**: Beta Value for ICAM4 (CHR:19 (10396158))
- **cg08450017**: Beta Value for CXCR6 (CHR:3 (45984838))
Investigating Methylation Profiles in Blood Cells

Publicly available data set (6 'healthy' males) - cell sorted
Genome Wide Methylation and Disease Grouping

![Graph showing DNA methylation data separated by sex and highlighted by the beta value](image)

cg21983484

- **Beta**:
 - Female
 - Male

M Benton

DNA Methylation

19/11/12
Genome Wide Methylation and Disease Grouping

Delta(Beta)

Genomic Position (Mb)
Genome Wide Methylation and Disease Grouping

Cluster Dendrogram

Height

Normal
Normal
Normal
Normal
Disease
Disease
Disease
Disease
Disease
Disease

M Benton
DNA Methylation
19/11/12
ESR/Wakefield Obesity Project:
- 15 patients pre/post-op gastric bypass (female; abdominal fat tissue)

Cluster Dendrogram

```
d = hclust (*, "complete")
```
ESR/Wakefield Obesity Project:
Overlaying Genomic Data Sets

ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data

Identified a specific miRNA that is significantly differentially methylated in abdominal pre vs post. The same miRNA shows significant differential expression. Pathways analysis indicates that 13 of the top differentially expressed mRNA are potentially regulated by the above miRNA. We have identified significant correlations between all layers of data, suggesting strong biological relevance.
Overlaying Genomic Data Sets

ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data
- this allows multidimensional analysis
ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data
- this allows multidimensional analysis

Identified a specific miRNA that is significantly differentially methylated in abdominal pre vs post
ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data
- this allows multidimensional analysis

- Identified a specific miRNA that is significantly differentially methylated in abdominal pre vs post

- the same miRNA shows significant differential expression
Overlaying Genomic Data Sets

ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data
- this allows multidimensional analysis

- Identified a specific miRNA that is significantly differentially methylated in abdominal pre vs post

- the same miRNA shows significant differential expression

- Pathways analysis indicates that 13 of the top differentially expressed mRNA are potentially regulated by the above miRNA
Overlaying Genomic Data Sets

ESR/Wakefield Obesity Project:

- multiple layers of genomic data
 - mRNA data
 - miRNA data
 - methylation data
- this allows multidimensional analysis

- Identified a specific miRNA that is significantly differentially methylated in abdominal pre vs post

- the same miRNA shows significant differential expression

- Pathways analysis indicates that 13 of the top differentially expressed mRNA are potentially regulated by the above miRNA

- We have identified significant correlations between all layers of data
 - suggests strong biological relevance
Conclusions

- We have designed and validated a novel QC and analysis pipeline
Conclusions

• We have designed and validated a novel QC and analysis pipeline

• This allows us to demonstrated the utility of high-throughput methylation technology in terms of disease association
 - able to group based on differential expressed methylation profiles
Conclusions

- We have designed and validated a novel QC and analysis pipeline

- This allows us to demonstrated the utility of high-throughput methylation technology in terms of disease association
 - able to group based on differential expressed methylation profiles

- Attention to study design will allow increased quality and application
 - i.e. multi-cell populations in tissue/whole blood
Conclusions

- We have designed and validated a novel QC and analysis pipeline.

- This allows us to demonstrate the utility of high-throughput methylation technology in terms of disease association - able to group based on differential expressed methylation profiles.

- Attention to study design will allow increased quality and application - i.e. multi-cell populations in tissue/whole blood.

- Applying multiple layers of genomic data shows potential to increase our understanding of complex biological pathways/networks.
ESR/Wakefield Obesity Project: Dr Donia Macartney-Coxson, Prof Richard Stubbs, Angela Jones, Daniel Kay

Norfolk Island Health Study: Prof Lyn Griffiths

PHD Supervisors: Dr Rod Lea, Prof Lyn Griffiths

Co Supervisors: Dr Donia Macartney-Coxson, Dr Geoff Chambers

Obesity Project Sample Running: George Washington University, Washington DC

Genomics Research Centre: Dr Heidi Sutherland, Michelle Hanna, Dr Bridget Maher, Dr David Eccles

Institutes: Institute of Environmental and Scientific Research, Wakefield Hospital, Griffith University, Victoria University of Wellington

All the patients for their consent to being part of the respective studies
Investigating Methylation Profiles in Blood Cells

Publicly available data set (6 'healthy' males) - cell sorted

- cg01477015 : CD19 () CHR:16 (28948319)
- cg01758575 : CD19 () CHR:16 (28943288)
- cg03660502 : CD19 () CHR:16 (28948092)
- cg05433111 : CD19 () CHR:16 (28943232)
- cg05981394 : CD19 () CHR:16 (28942152)
- cg06323049 : CD19 () CHR:16 (28943094)
- cg07322144 : CD19 () CHR:16 (28948179)
- cg07597976 : CD19 () CHR:16 (28943019)
- cg09989938 : CD19 () CHR:16 (28944403)
- cg14102807 : CD19 () CHR:16 (28943677)
- cg24900963 : CD19 () CHR:16 (28948266)
- cg27565966 : CD19 () CHR:16 (28943198)